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STOCHASTIC LINEAR SYSTEMS 

R.  L. Kashyap 

Ab s t rac t 

The paper deals k t h  the maximum likelihood (NL) estimation 

of the coefficients of a discrete  Linear system described by 

a set o f  coupled difference equations ei ther  from the input-output 

data o r  from the output data alone. The input and measurements 

may be noisy. The methods may be noisy. The methods a l so  

estimate the covariances of the  disturbing noise. Moreover, 

the schemes can be modified t o  allow for  r e a l  t i m e  operation, 

but the estimates are no longer ML except i n  the asymptotic 

sense. 
* 

Computational results are given for  a t h i r d  order system. 



I. IpJTRoM3cTION 

This paper deals with the ident i f icat ion of the parameters 

of a discrete stationary stochastic l inear  system from noisy input- 

output measurements {v(i) ,  z(i)), i=l, 2,. . * ] or from output data 

[z(i) ,  i=l ,2 ,  ...I alone. 

considers the f i t t i n g  of l inear  models for  t he  observed data since 

It i s  more apt t o  say tha t  the  paper 

there may not be such a thing as a livlear stochastic system which 

completely specifies the probabilist ic environment under considera- 

tion. 

t o  the given data must re f lec t  the a b i l i t y  of the model t o  perform 

tasks l i k e  prediction f o r  which the model i s  usually used. 

The c r i te r ion  function chosen f o r  f i t t i n g  the  l inear  model 

Any model building problem i s  intimately connected w i t h  t he  

volume of the  available data. 

available measurement pairs  {v(i), z(  i ) ]  i s  limited. 

a r i ses  naturally when a cost i s  attached t o  the experiment for 

determining each input-output pa i r  (v( i ) ,  z(  i)]. 

the amount of measurements available may be inf in i te .  

available number of measurements i s  limited, one i s  interested 

in  computing the optimal estimates of the unknown parameters 

including the noise variance l i ke  the maximum likelihood estimates. 

I n  such circumstances, 

the estimates i n  an e f f ic ien t  manner and not necessarily 

in  "real  t i m e "  computation. But when the  amount of data 

available 

need f o r  developing "on l ine" computing schemes which can 

In some pr.oblems the number of 

This  l imitation 

I n  other problems, 

When the 

one i s  interested only i n  computing 

i s  growing i n  time or i s  inf ini te ,  there i s  a 
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update the estimate every time an additional piece d data  comes fn. 

For example, such problems a r i se  naturally i n  the determination of 

optimctl f i l ters with noises of unknown s t a t i s t i c s .  In  such problems, 

the estimates are  expected t o  approach t h e i r  t rue values as the 

amount of data handled tends t o  inf ini ty .  

When the number of available measurements i s  f in i t e ,  say N, 

the c r i te r ion  fYmction J (A) used for determining the  parameters 

specified by matrix A9 with t rue  value A I i s  given below: 
N 

Jk 

N 

where 

$( i ;A)  = 

h e ( i ; A )  = 

R(A) = 

- - 

predicted l inear  l ea s t  squares estimate of z ( i )  

based on a l l  previous measurements z(  j), j i, the  

imputs and the parameter A. 

z ( i )  - z(i;A) = er ror  i n  prediction 

E [ e ( i ; A )  e T ( i ; A ) ]  

L. 

covariance matrix of the prediction error. 

The error e(i;A), a l so  known as the innovation, obeys a 

l inear  difference equation with z ( i )  as the forcing function and 

whose coefficients are functions of A. Thus the estimation problem 

i s  reduced t o  the solution of a standard parameter minimization 

problem with difference equations as constraints. 

Figure 1 for the  ident i f icat ion configuration. 

We refer t o  

When the disturbances are Gaussian, exp [-JN(A)]  i s  the l i k e l i -  

hood function so tha t  the estimate of A obtained by minimizing 

JN(A) with respect t o  A i s  the maximum likelihood estimate of A. 
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As a result, as M tends t o  inf ini ty ,  the  

dlmost surely, Moreover, it is  possible 

variance of the estimate with the aid of 

* 
estimate of A tends t o  A 

t o  get a measure of the 

cramer-Rao lower bound El21 

When the number of measurements i s  growing with time, the algo- 

rithms mentioned above can be modified t o  m a k e  "on-line" computation 

of estimates possible. 

A t  t h i s  stage, the available results on this  problem may be 

b r i e f ly  mentioned. 

There are three principle methods of ident i f icat ion which are  

(1) the l inea r  l e a s t  square (LLS) methods of Kalman 111, Levin [ Z ] ,  

Stigl i tz .  and Mcbride [3] ; (2)  the instrumental variable (N) methods 

of Joseph, Lewis, and Tou and ldong and P ~ l a k  (51; (3) the 

stochastic approximation and related techniques (SA) of Ho and Lee [61, 

Sakrison [71, Oza and Jury [ 8 ] .  

difference equations, although some of them l i k e  SA methods can 

be extended for multiple input-output systems. 

only the parameters of the difference equation and - not the covariance 

All of them t r e a t  only scalar  

All of them estimate 

of the associated noises. Moreover, both the  LLS and SA techniques 

need a knowledge of the noise covariances whereas IV methods cannot 

t o l e ra t e  input disturbances. All of them require knowledge of both 

input and o u  tpvl t measurements Except i n  IV methods, the  

estimates obtained w i t h  l imited number of measurements are very 

poor unless the i n i t i a l  guess i s  close t o  the true value. 

11. TJBt MODEL OF THE RANDOM PROCESS 

The r-vector output process y ( i )  is re lated t o  the  r-vector 

input process u ( i )  by the following set of coupled difference 

equations e 
"pi 
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y(i) f %y(i-I) f . . + Any(i-n) 

(2.1) 
= c u( i-1) i- cn_,u(i-2) + . . . + clu(i-n) n 

% 

where Ai,Ci, i=l, . . ., n are a set of r x r constant matrices. 

true values of these matrices have to be estimated. 

li and r are assumed to be known. 

The 

The integers 

Many a kime both y(i) and u(i) cannot be measured exactly 

for all i. 

that 

Usually a vector variable z(i) can be measured such 

z(i) = y(i) f q(i) (2.2) 

where 

E [Tl(i)l = 0 

E [T(i) y(j)l = 0 

The situation regarding the input u( i )  is slightly different. 

In a number of examples such as economic forecasting very little 

is known about the inputs except that they are completely unpredic- 

table. Moreover, the inputs may have been introduced solely for the 

puppose of analysis and they may not have any physical significance. 

In such cases, one can assume u(i) to be a sequence of zero mean ran- 

dom variables. In some other examples with well-defined input- 

output relationships, the input u(i) may be represented as 

u(i) = v(i) + q(i) (2.4) 

where u(i) is the actual (unknown) input, v(i) is the (known) 

nominal input that was planned for  the experiment and s(i) is 

the inevitable error in injecting the input. 
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It is  clear  t ha t  not a l l  sequences v ( i )  can serve as relevant 

candidates f o r  the experiment. 

t ha t  should be sa t i s f i ed  by the nominal input sequence v ( i )  f o r  

successful e-erimentation* 

We shall give l a t e r  the conditions 

Presently the question of the optimal 

choice of the nominal input sequence v( i )  among the various candidates 

i s  open and w i l l  not be t reated here. 

Thus, according t o  the type of data available, one can divide 

the l i nea r  model building problems in to  4 groups where s ( i ) ,  T(i) 

indicates sequences of' zero mean uncorrelated variables referred t o  

i n  obtaining good approximations t o  spectral  density functions of 

y ( * )  fl6l. In addition, classes (A) and (B) arise very often i n  

many economic forecasting problems where the idea of measurement 

noise i s  superfluous. 

with well-defined input-output relationships. 

can be considered t o  be special  aases of classes (B) and (D), 

respectively, by se t t ing  v ( i )  I 0 f o r  a l l  i. Thus v ( i )  w i l l  be 

se t  ident ical ly  t o  zero when no information is  available on it. 

Classes (C) and (D) a r i s e  i n  alf. problems 

Classes (A) and (C) 
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The ident i f ica t ion  problem i s  to estimate the unknown matrices 

n, cl, . . . , Gn, R and R from the available data 

A s  
5 ?I 

among A 1 ) * e * , A  

[v(i), z(i)], i=l, . . . , N  where N can be f i n i t e  or in f in i te .  

before, the collection of a l l  the unknown matrices w i l l  be denoted 

by A. 

rrI. THE INHOVATION EQUATIONS 

A s  mentioned i n  the introduction,the coeff ic ients  t h a t  are 

actually estimated are those of the so-called "innovation" equation 

re la t ing  the  successive value of the prediction errors  e(i,A) with 

the measured output and input. 

great d e t a i l  i n  reference [lob and hence we w i l l  b r i e f ly  mention 

This equation has been discussed i n  

the outlines here. 

L e t  g ( i )  = predicted l i nea r  l e a s t  squares estimate of z ( i )  

given a l l  the previous measurements z( j ), j e i, 

previous measured inputs v( j ), j 5 i, and the 

coefficients of the model equakion (2.1). 

= Arg [Min E \lz(i) - f i (z( i - l ) ,  z(i-2), ...)If] 
f : I 

where f . ( * )  i s  a l i nea r  function of i t s  arguments. 
1 

e ( i>  4 innovation a t  ins tan t  i 

= z ( i )  - f ( i )  . 
T One can eas i ly  demonstrate [g] that E [ e ( i )  e ( j)]  = 0 ,  

V j # i . Thus, the  innovations are nothing more than orthogonalized 

measurements. 

(A) Exact Measurements of the Output Available 

By def ini t ion z(i) = y ( i )  . I n  addition, Ci,' i s  assumed t o  

exist .  Zlhe system equation (2.1) can be rewritten as (3.1) 
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n n 

j=1 j=1 

;(t) can be obtained from (3.1) by se t t ing  F( t -1 )  = 0 since one 

does not have any information on it based on the measurements 

z( j ) ,  j t alone. 

Subtracting (3.2) from (3.1), one gets 

e ( t )  =n z ( t )  - i(t) = c n  s ( t )  

or 

The required innovation equation is  obtained by substi tuting 

(3.3)b in to  equation (3.1). 

Moreover, from (3.3)a, one can show that 

(B) Noisy Measurements of State 

z ( i )  = y ( i )  + T\(i) 
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The derivation of the innovation equation i s  different from the 

case considered e a r l i e r  and has been considered by the author i n  

reference [lo]. 

The innovation equation i s  given i n  (3.7). 

Hence only the resu l t s  w i l l  be mentioned here. 

n n 

j=1 j=1 

(3.7) n 
= z ( t )  t. I A . z ( t - j )  J 

j=1 

L e t  

The 3: x r coefficient matrices B 

solving the following set of algebraic equations. 

..., Bn and Re are found by 17 

i+ 1 it. S i 

k= 1 k= 1 k= 0 

i=O, 2, .. ., n 

where 

The equations (3.8) can be rewritten i n  matrix notation. 



f 

AO 

Az 

An 
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BT 

. 

. 
T 

Bnr-l 

fii.1 

n cni.l 
C 

'n-1 'n cnfl 

s r 
An i t e r a t i v e  scheme w i l l  be mentAoned below for obtaining Bi 

and Re from Ai,Ci,R and R 8 with k denoting the i t e ra t ion  number. 5 n' 

j=1 

i=2, . . ., n 
n n n 

j=l j=l j=l 
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The i t e r a t ion  scheme i n  equations (3.10) and (3.11) i s  based 

on a set of difference equations i n  Bi(t) from which the algebraic 

equations (3.9) Ftere derived [ 101. 

TV. THE LIKELIHOOD FUNCTION 

The conditional probabili ty density p(z( i ) ,  . . ., z(N)/v(i), . ., v(N-1); 

A w i l l  be computed assuming the  noise sequences T ( i )  and E(i) t o  be 

Gaussian with the second order properties mentioned ear l ie r .  On 

account of the l a t t e r  assumption, the l inear  l e a s t  squares estimates 

z( i ;A)  equals the conditional mean of z ( i )  mentioned below. 
A 

A 

z( i ;8)  = E [z( i ) /z( j ) ,  j < i v( j ) ,  j 5 i; A] 

Let e(i;A) = z ( i )  - i ( i ;A) 

It has already been mentioned tha t  

H nce 

Let 

p ( z ( l ) > .  . ., z(N)/v(i), . . ., v(N-1);A) 
N 

= II p(z ( j ) / z ( l ) ,  . . a , z ( j - l ) ;  v(l) ,  ..., v(N-1); A) 
j=l 

N 



Thus the estimate of A obtained by minimizing JN(A) with 

respect t o  A w i t h  the variable e(j;A) obeying the difference 

e'quation (3.4) or (3.7) i s  the same as  the so called "unconditional" 

maximum likelihood (ML) estimate of A. 

By Wald's theorems ('l3-l$\ -- the ML estimate of A w i l l  
-n 

tend t o  the t rue  value A with probabili ty one as the 

number of measurements N tend t o  i n f i n i t y  i f  the  conditional 

density function of the measurements s a t i s f i e s  the assumptions 

(1) - (8) of Wald's paper [14].. I f  these, the only assumption 

of in te res t  i n  the present context i s  assumption 4 which 

s t a t e s  t ha t  

for  a t  least one value of ~(1)) . ,z(N). The rest of the 

assumptions are  automatically sa t i s f i ed  here. It i s  natural  

t o  discuss the conditions tha t  need be imposed on the system 

t o  assure the va l id i ty  of the above assumption. These 

conditions can be obtained by inspection of the innovation 

% 'O equation (3.4) or (3.7). 

(posit ive def in i te )  and/condition R 

i f v ( i )  z o for  all i. 

Throughout t h i s  discussion 
GI ': 

> 0 i s  imposed only s 

I n  systems of c lass  (A), v ( i )  = 0 and z ( i )  = y ( i ) .  

The innovation equation (3.4) reveals t ha t  one has t o  know 

Cn and t h i s  should be nonsingular. 

the remaining coefficients AIJ An, C1, e a ,  Cnml and RF t o  be 

estimated . 

These conditions permit 

R F  In systems of class (3) C1,C2, e -,Cn, AI, - ,Anj  
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can be estimated as  lor,g as the input sequence v( i ) ,  

1 

can s e t  RE = I 

ident i f f cat  i on 

the innovat ion 

and Re)> it i s  

i = 1,2,. ... repeatedly span a l l  the directions of the 

r-dimensional sg?ace. 

i s  a suff ic ient  condition. Of course C must be nonsingular. 

If v ( i )  is  a scalar,  t h i s  v ( i )  # 0 

n 
I n  problems of c lass  ( c ) ~  z ( i >  = y ( i )  + q ( i )  and 

v ( i )  s 0. 

does not expl ic i t ly  involve the coefficients Ci9 i = 19*..,n. 

Moreq'ver, there i s  no unique way of specifying R,. 

In t h i s  cases the innovation equation (3-7y 

I 

Hence, one 

without any loss of generali ty.  

schemec determix only the coefficients of 

equation ( in  t h i s  case the A.,Bi i = l,.*.,n 

necessary t o  impose additional conditions so 

Since these 

1 

t ha t  one can uniquely recover CL,.-.,C and R from the 

coefficients Ai,Bi, i = l , * e . 9 n  and R 

has t o  consider a scheme for computing the coefficients C 

and R recursively from the algebraic equation (3.9). A s  

before, k w i l l  stand for  the i t e r a t ion  number 

n r7 
To do t h i s ,  one e 

i 

r7 

i tl i +1 

j =1 j =1 

i-l 

j =O 

i = l,..@,n 

with the definit ions 
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- k 
0 -  C = O ,  A. - I Bn+s = I 

Hence, i n  addition t o  the nonsingularity of Cn, one requires 

t o  ex is t .  This means that a l l  the individual difference 

If equations i n  the system (2.1) must be of the same order. 
-1 

An 

R 
17 

does not ex is t ,  there is  no unique way of recovering C i 

from Ai, Bij and Re. 

I n  systems of c lass  (D), z ( i )  = y ( i )  + q ( f )  and the 

innovation equation (3.7) involves a l l  the parameters A. ,C 

i = l>...,n expl ic i t ly  and R,, R 

the exact ident i f icat ion is  possible i f  the input ~ ( i )  can 

excite a l l  the "modes" of the system. In otherwords, i f  

3 i' 

implici t ly  v ia  Bi 's .  Thus, 
rl 

every set of n consecutive inputs w i t h  v ( i )  as a leading 

member i s  rearranged t o  form a column vector, say ~ ( i ) ,  then 
- 

the sequence v(i), F(2), e . must repeatedly span a l l  t h e  

directions of the nr dimensional space. 

V. A L G O R I T m  FOR MAXIMUM LIKELIHOOD ESTTWTION 

This  section w i l l  deal  only with the systems represented 

i n  equation (2.1). The problem of classes (A),(B),(C) and 

(D) having different  types of input-output information w i l l  

be t reated separately. 

referred t o  have the properties mentioned i n  equations (2.3) 

and (2.5). 

i = l,...,n, R and R 

i = 1,. . .,N. 

The noises F(i) and y ( i ) ,  when 

The matrices t o  be estimated are  among A Ci, i' 

The available data i s  fz( i ) ,v( i ) ] ,  
F '1 

(A) Problems of Class ( A I  

Here z ( i >  = y ( i )  and &.) E 0. Since C i s  assumed t o  be n 



nonsingular and known, one may as wel l  s e t  C = 5. The 

C1,.,e,Cn_l and R unknowns are  A1,0601An3 

rotcation, re labe l  Ci and R as follows: 

n 
For ease of e’ 

s 
h 

An+i = Ci , i = lJ . . . ,n-l  

The innovation equation is  

n n 

i=2  j =1 

E(e(i)eT(j)) = AZn Sij 

The c r i te r ion  function i s  

N 

A2n j =1 

Minimization of J ( A )  subject t o  the d i f f e ren t i a l  

constraint  (5-1) i s  a standard problem i n  the minimization 

theory. 

gradient method orJ preferably, by the conjugate gradient 

method 1116 - since with a l i t t l e  increase i n  computation, 

one gets  a considerable increase i n  the reate of convergence. 

The computational scheme i s  given below involving four steps 

with the  l e t t e r  k i n  superscript denoting the i t e r a t ion  

One can solve it numerically e i ther  by a first order 

number. 
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k 
( i )  With the given Ai solve f o r  the difference equation 

(5.1) for the prediction errors  e ( t ) ,  t = 1,. . .,N. Minimizing 
k J(A ) with respect t o  A2n one gets  the following estimate 

fo r  A 
2n N 

t=l 

( i i )  Let us compute the gradient matrices 

By different ia t ing the innovation equation with respect t o  

(Ai) , one can compute the p a r t i a l  derivatives ae(t)/a(Ai) 
3 0  j p  

aJk @ aJ 
Let 1 = T I A i  = A i  k 

where f3(k) and D(~) a re  scalars.  

The gain D ( ~ )  i s  chosen t o  maximize the difference 
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The i n i t i a l  values of P. are  
1 

(iv) 

By se t t ing  f3(k) I 0 i n  the above computation one gets  G L  

Increase k t o  k t l  and go t o  s tep (i). 

gradient method. 

(B) _Systems of Class (B)  

Here z ( i )  = y ( i )  and sa t i s f i e s  the conditions mentioned 

i n  section I V .  The unknowns are  Ai Ci, i = 1;. . .,n and 

. The algori tha i s  very similar t o  tha t  i n  section (A) R!5 
and hence w i l l  be skipped. 

(e) Systems of  Class (c) 
Here z ( i )  = y ( i )  t q( i )  and v ( i )  5 0. A s  mentioned 

e a r l i e r  one can s e t  R = I and assuine A t o  be nonsingular. 

The unknowns are Al j  ..., An and ClI...>C The innovation 

equation i s  

n 

n 

n n 

j =1 j =1 

with E(e(t)eT(t)) = Re 



-17- , 

The ident i f icat ion procedes i n  2 steps.  

(i) E s t i m a t e  the coefficients A1’ . . )Anl  B1, . . >Bn 

and Re by using t h e  method outlined i n  Part (A) of t h i s  
n -  A n  n n 

section. Label thein as A A - - ,Anl B19 - - - 9 B  and Re, l3 2 n 
nespectively. 

(ii) The estimate of R i s  given by (4.2) 
9 %  

A 

The estimates C1J...9C of C1, ...>e are obtained as the n n 
steady s t a t e  solutions of the recursfve (4 .3 )  w i t h  Re? 

Ai> Bi replaced by se Ai9 B. respectively. 
A A  

1 

fD) Systems of Class (D) 

Here z ( i )  = y ( i )  t q ( i )  and u ( i )  = v(i) + s(i). The 

input v(i)  obeys the conditions inentioned mentioned i n  section 

IV. 

R and R The innovation equation involves a l l  the  

parameters Ai> Cip i = 1, * . * > n  

The unknown matrices are A i 9  ci i = 1 j * 0 . 9 n  and 

5 11 
and i s  given below 

n n 

j =1 j =1 

n 

j =1 

where the  coefficients Bi, i = l J . . . ) n  and Re obey the 

algebraic equations ( 3  -8 ) .  
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Let  

4 ci i = lp...)r *n+l 

A 2 n + ~  4 R  5 

. .  

The c r i te r ion  function i s  

N 

The scheme:is very similar t o  tha t  of par t  (A) of t h i s  section 

and consists of the  following steps 

Using the given values evaluate 

N 

j =1 

(ii) Evaluate $q-jp for i = 1,. .,2n+l; j j p  = 1, . . ,r; 
by different ia t ing the equation (5.8) w i t h  respect t o  (A ) 

for  a l l  i, j and p. During t h i s  process, one needs the 
i jp  

p a r t i a l  derivatives of a l l  the elements of B with respect t o  

every element of A.  This  can be obtained d i rec t ly  by 

different ia t ing equation ( 3 . 8 )  or  recursively by different ia t ing 

equation; ( 3 . f 0 } T h  u s o n  e can compute the 

gradient matrices aJ/a”, i = 1,. . .,2n+l. 
ktl k (k) (k) i = 1,...,2n+l 

(iii) Ai = Ai + P p i  

k aJ(k) + B(k) k-1 
’i =-a7i. pi 

1 

. : . _.. - . .  
where the scalars  p(k) and #3(k) are computed. as i n  part (A) of 
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t h i s  sect ion.  

( iv )  U s i n g  

(3 ;io). Compute 
n 

j =1 j =1 

n 
- 1 C Aktl CT 

j 2n-t-1 j 
j =1 

(v) Increment k by  one and go t o  step (I). 

The computational scheme may be simplified i n  mariy 

respects. When the mean square value of v( i>  is much greater 

than R then we can neglect the effect of the p a r t i a l  

derivatives of the elements of Bi w i t h  respect t o  those of 

A. altogether. 

comparable with t ha t  of R 

derivatives, but they may not vary much from i t e ra t ion  t o  

E 

When the mean square value of v ( i )  is 
1 

we may not neglect these p a r t i a l  
Y 9  

i t e r a t ion  and hence, it is enough i f  they a re  computed once 

i n  many i t e ra t ions .  It may be a l so  worthwhile t o  look in to  

the nethods of optimization which do not expl ic i t ly  compute 

the gradients. 

V I .  ON-LINE IDERTIFICATION SCHEMES 

The maximum likelihood estimation ideas w i l l  be used 

i n  conjunction w i t h  stochastic approximation t o  develop on- 

l i n e  computing schemes. 

individually, batch processing will be performed as  it 

reduces the amount of computation i n  many problems. 

Instead of handling every measurement 

Every 
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batch has a f in i t e  number, say m, of measurements. The 

kth batch contains the measurements { ~ ( i ) ~ v ( i ) ] . ,  i = (k-l)m+l, 

Let A denote the matrix of parameters t o  be estimated 

and e(t,A) denote the predicted e r ror  computed from the  

innovation equation using the actual  measurements z ( t )  and the 

parameter A. 

stationary processes 

Assume that  z ( t )  and e(t,A) are Gaussian 

Consider the c r i t e r ion  function J(A)  

d 
= 6 f ( t ,A)  

where Re ,the covariance matrix of e(t,A) , i s  a function of A. 

As demonstrated by Wald c14], one has 

J(AO) c J(A) Y A" f: A (6.1) 

On account of the smoothness properties of J(A) one can write 

where g(A,Ao) i s  a posit ive scalar  function and cq ( - 1  is 
a nzontonically increasing function of the argument. In view 

of (6.2), the following inequality i s  v a l i d  for  all values 

of A i n  some neighborhood around the  t rue value A . * 

One gets the following algorithm by applying the Robbins 
/ a J \  Munro scheme for  finding the zero of the  function E I r  

AJ 
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where p(k) i s  a scalar  sequence such tha t  

k k 

From Gladyshev’ s theorem [ 111, and equations (6.2) - (6.5) it follows 

tha t  Ai tends t o  the  t rue  value Ai both i n  the mean square sense and 

v i th  probabili ty one. It should be noted tha t  i f  condition (6.3) i s  

satisfied,  we do not need any independence assumptions on the 

correction terms used i n  the stochastic a-pproximation scheme of 

equation (6.4). A s  i n  a l l  stochastic approximation procedures, the 

mean square error  of the estimate i s  inversely proportional t o  the 

nmber of measurements processed. 

k * 

The de ta i l s  of the computation w i l l  be given fo r  problems of 

the classes (A) and (D).  

are similar. 

The others are  omitted since the methods 

(A)  Systems of Class (A> 

i’ 
- h The unknowns are  A i=1, . . ., n. Awi - Ci, i=l, . . *, n-1 and 

Azn !! - Rc. Let Cn = I. The algorithm i s  

(k- 1 ) m C  1 
i=1, . . ., 2n-1 
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The auxiliary equations for computing e ( t )  and i t s  p a r t i a l  

derivatives are given below 

(a) Systems of CLass D 

- A h The unknowns are Ai, . , An7 - AMi, i=l, . . .) n, R5 = Azncl, 

and R The algorithm i s  given i n  the following 3 steps. A 
RE = A2ni-z 7' 

k k- 1 
T (i) From the  given values of A i=1,. .*, 2nb2 and R i7 

k k 
rl 

compute Bi, i=17 . 0 7  n from the equations (3.10). TJ@date R 

using the equation given below which i s  a modification of (3.11). 

n 2n 

(ii) The e r ror  e ( t )  i s  evaluated recursively 

n n 

j= 1 j=1 

n 
= z ( t )  + T k  A j  z ( t - j >  

j=l 
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One can recursively compute the p a r t i a l  derivatives of e ( t )  with 

respect t o  Ai f o r  a l l  i=1, .. .,2n+1 by different ia t ing the e(t) 

equation and using the p a r t i a l  

with respect to A .  fo r  a l l  j. 

be obtained by d i f fe ren t ia t ion  
J 

derivatives of a l l  elements of Bi 

The l a t t e r  p a r t i a l  derivatives can 

of equations (3.10). 

(iii) Update the  values of A?) a s  follows: 

km 

(k-1)mt.l 
i=1, . ., 2n+l  

t 

The bulk of the computation occurs i n  s tep (ii). T h e batch 

processing of data helps i n  the reduction of the p a r t i a l  derivatives 

to be evaluated. 

of Bi with respect to those of A 

par t  (D) of the  section V are a lso valid here. 

Rsgarding the p a r t i a l  derivatives of the elements 

a l l  the comments made e a r l i e r  i n  3' 
When r i s  large, 

the demands on the computer may be heavy since f o r  fixed n, the amount 

of computation i s  proportional to r 3 . But there i s  no way of get t ing 

around the problem i f  there i s  both process noise and measurement 

noise and one i n s i s t s  on measuring a l l  the noise covariances and 

coefficients of the  difference equation. Of course, the amount of 

computation is grea t ly  reduced i f  the input noise 

since Bi = An-i+l and hence the p a r t i a l  derivatives of Bi with 

respect t o  A.  can be writ ten down by inspection. 

were absent 

J 
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VII. EXAMPLES 

(A) Maximum Likelihood Estimation of a Third Order System 

A single input-single output system obeying the  following 

difference equation w i l l  be considered. 

z ( i )  = y( i )  + q ( i >  

No information is  available on the input s(i)  except t h a t  

it i s  zero mean. A s  before, one can get r the covariance of 

noise €(i), t o  be one. 

and r , t he  covariance of the uncorrelated noise T(i). 

available measurements are {z(  i)’ i=1, . . ., N’) 

4’ 

3 The unknowns are  al,a2,a3,~19~2JC 

The only 

The computational method mentioned i n  section V(C) can be 

used here. However, since t h e  output z( ) is  a scalar, one can 

easi ly  write up a second order gradient method without much e f fo r t  

for  carrying out the minimization process. 

i n  figure 2 and table 1. In figure 2 the ML estimates of the 

seven parmeters  are graphed against the number of samples N. 

f igure shows how the ML estimates approach t h e i r  t rue  value as 

the number of samples become large. In  table  1 the number of samples 

are  fixed a t  some number, say 40Q and the estimates obtained during 

the minimization process are tabulated against the nmber’of 

i terations.  

t ion  i s  performed i n  the  first i te ra t ion  itself. 

The results are given 

This 

As c w ‘ t e  seen from the table, most of the minimiza- 

(B) On-Line Determination of the Noise S t a t i s t i c s  

Consider the following scalar input-scalar output system 



Table 1. Results of the I te ra t ive  Procedure for  Computing 
the ML Estimates. The number of samples i s  fixed, 
a t  the value 400 

~ 

0 5700 
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n 

z ( i )  = y ( i )  c n ( i )  

g ( i )  i s  zero mean, uncorrelated process, not accessable f o r  

measurement. Without loss of generality, set  re = 1. The 

coefficients alY e .  - I  a , c , . ., c 

of noise n(i) i s  unknown“ 

are known. Only the variance n 1  n 
This t r i l l  be estimated on-line r^rl 

from the  measxrenents z i i ) .  The innovation equation i s  

n n 
e ( t >  + Tb. e ( t - j >  = z ( t )  + I a  z ( t - j >  

L J  3 
j=1 j=l 

2 

7 L e t  ECe (t)] = re. The coefficients bl, ..., bn, re and r 

and unknown since they iiepesd on r 

estimates of re, bi at the  tth instant. Then the algorithm can be 

writ ten as follows using t both as the time and i t e r a t ion  index. 

Le.: re(t) and. bi(%) be 
To 

n n 
T- 

e(%) f t b j ( t )  e ( t - j j  = z ( t )  f L j  i a z ( t - j )  
j= l  j=l 

The recursive equations for b can be writ ten down from (3.10) 3 

bl(t) = a r ( t - l ) / r e ( t - l )  n 7  
i-1 i 

i-l 

j=1 
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The equation for r (t) can be obtained by modifying (3.11). 17 

n nCl n 
Y - 2  

“ L  r,(t) = - L r 7 (t-1) f bi(t) re(t-l) 
j=l j=1 j= 1 

This completes the identification algorithm. 

One can show [lo] that the approximate value of the best estimate 

of y(t) given z(l), .. .y z(t) can be written down as follows 

VIII. DISCUSSION 

While comparing the existing methods of identification 1-85 

with those of this paper, the following aspects of our algorithms 

should be mentioned. 

(i) Vith limited number of measurements, the maximum likeli- 

hood estimates of the various parameters including the noise variances 
4 

are computed. One can rarely do better than this. One can get a 

measure of the variance of the estimate. 

(ii) The identification is possible even if there are no 

input measurements. 

(iii) The method handles vector measurements also. in a 

similar manner. 

(iv) The noise in the output V(i) need not be uncorrelated. 

It can have finite correlation time (vith unknown covariance 

function). 
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(v) The algorithms present B convenient method of conputing 

good approximations to the  spectral d e n s i t i e s  of stationary processes 

on t he  basis  of the observed samples by assuming t h a t  %hey obey a 

model of equation (2,l). Hmever, a rigorous comparison has not 

been mahe with the traditional methods 163. 

It has already been mentioned tha t  the  on-line ident i f icat ion 

schernes present a method of optimal f i l t e r i n g  with disturbances of 

unknown statistics. The com2utational. aspects associated with %he 

on-line schemes have already been mcntioned. 2urtherJ no stability 

studies are available on our algorithm. 

are promising. 

But the experimental results 

The problem of identifying thr? coefficients and the noise 

variances of a 6iscrete linear system on the basis of noisy input- 

output rneasurenents or output measurements has been reduced to a 

standard pBrametes minimization' pr~blen: with. difference equations 

as constraints. The erfkerion function is the sum of the squares 

of the optimal prediction error:and t h i s  can be interpreted as the  

likelihood FtmcLion vith Gwssian disturbancese 

of the parameteriare derived when the nttrrber of measurements i s  

limited and for various types of' input-output data. 

Optimal estimates 



System Identif ie r 

I 5 

noise noise 



-27%- 

-0.5 b Kx) 200 400 600 
I t  I f I  1 1 1 1  t r  6 I ! #  I 

800 1000 1200 1400 I600 
Number of Samples N 

FIGURE 2 . GRAPH OF MAXIMUM LIKELIHOOD ESTIMATES OF 01.02 9 

a3,cI,c2,c3 , AND t' VS NUMBER OF SAMPLES. 
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